Способы снижения интенсивности и скорости коррозии металлических изделий

Скорость коррозии – многофакторный параметр, который зависит как от внешних условий среды, так и от внутренних свойств материала. В нормативно-технической документации существуют определенные ограничения по допустимым значениям разрушения металла при эксплуатации оборудования и строительных конструкций для обеспечения их безаварийной работы. В проектировании не существует универсального метода определения скорости коррозии. Это связано со сложностью учета всех факторов. Наиболее надежным методом является изучение истории эксплуатации объекта.

Критерии

Вам будет интересно: Процессы изобарный, изохорный, изотермический и адиабатный для идеального газа

В настоящее время в проектировании техники используют несколько показателей скорости коррозии:

  • По прямому способу оценки: уменьшение массы металлической детали на единицу поверхности – весовой показатель (измеряется в граммах на 1 м2 за 1 час); глубина повреждений (или проницаемость коррозионного процесса), мм/год; количество выделяющейся газовой фазы продуктов коррозии; продолжительность времени, в течение которого появляется первое коррозионное повреждение; число центров коррозии на единицу площади поверхности, появившихся за определенный срок.
  • По косвенной оценке: сила тока электрохимической коррозии; электрическое сопротивление; изменение физико-механических характеристик.

Первый показатель по прямому методу оценки является наиболее распространенным.

Расчетные формулы

В общем случае весовые потери, определяющие скорость коррозии металла, находят по следующей формуле:

где q – уменьшение массы металла, г;

S – площадь поверхности, с которой произошел перенос материала, м2;

t – период времени, ч.

Для листового проката и изготовленных из него обечаек определяют глубинный показатель (мм/год):

m – глубина проникновения коррозии в металл.

Между первым и вторым показателями, описанными выше, существует следующая зависимость:

где ρ – плотность материала.

Основные факторы, влияющие на скорость коррозии

На скорость разрушения металла влияют следующие группы факторов:

  • внутренние, связанные с физико-химической природой материала (фазовая структура, химический состав, шероховатость поверхности детали, остаточные и рабочие напряжения в материале и другие);
  • внешние (окружающие условия, скорость движения коррозионно-активной среды, температура, состав атмосферы, наличие ингибиторов или стимуляторов и другие);
  • механические (развитие коррозионных трещин, разрушение металла под действием циклических нагрузок, кавитационная и фреттинг-коррозия);
  • конструктивные особенности (выбор марки металла, наличие зазоров между деталями, требования к шероховатости).

Физико-химические свойства

Вам будет интересно: Такие обычные люди, или значение «почему бы и нет»

Наибольшее значение среди внутренних факторов коррозии имеют следующие:

  • Термодинамическая устойчивость. Для ее определения в водных растворах применяют справочные диаграммы Пурбе, по оси абсцисс которых откладывается pH среды, а по оси ординат – окислительно-восстановительный потенциал. Сдвиг потенциала в положительную сторону означает большую устойчивость материала. Ориентировочно она определяется как нормальный равновесный потенциал металла. В реальности материалы корродируют с различной скоростью.
  • Положение атома в периодической таблице химических элементов. Металлы, наиболее подверженные коррозии, – это щелочные и щелочноземельные. Скорость коррозии снижается при увеличении атомного номера.
  • Кристаллическая структура. Она оказывает неоднозначное влияние на разрушение. Крупнозернистая структура сама по себе не приводит к росту коррозии, но благоприятна для развития межкристаллитного избирательного разрушения границ зерна. Металлы и сплавы с однородным распределением фаз корродируют равномерно, а с неоднородным – по очаговому механизму. Взаимное расположение фаз выполняет функцию анода и катода в агрессивной среде.
  • Энергетическая неоднородность атомов в кристаллической решетке. Атомы с наибольшей энергией расположены в углах граней микронеровностей и являются активными центрами растворения при химической коррозии. Поэтому тщательная механическая обработка металлических деталей (шлифовка, полировка, доводка) повышает коррозионностойкость. Данный эффект объясняется также формированием более плотных и сплошных оксидных пленок на гладких поверхностях.
Рекомендуем:  Чем покрыть половую доску: покраска полов и выбор лакокрасочных материалов

Влияние кислотности среды

Вам будет интересно: Шуточные номинации для учителей на выпускной

В процессе химической коррозии концентрация ионов водорода оказывает влияние на следующие моменты:

  • растворимость продуктов коррозии;
  • формирование защитных оксидных пленок;
  • скорость разрушения металла.

При рН в интервале значений 4-10 единиц (кислый раствор) коррозия железа зависит от интенсивности проникновения кислорода к поверхности объекта. В щелочных растворах скорость коррозии сначала уменьшается из-за пассивации поверхности, а затем, при рН>13 увеличивается в результате растворения защитной оксидной пленки.

Для каждого вида металла существует своя зависимость интенсивности разрушения от кислотности раствора. Благородные металлы (Pt, Ag, Au) устойчивы к коррозии в кислой среде. Zn, Al быстро разрушаются как в кислотах, так и в щелочах. Ni и Cd устойчивы к щелочам, но легко корродируют в кислотах.

Состав и концентрация нейтральных растворов

Скорость коррозии в нейтральных растворах зависит в большей степени от свойств соли и ее концентрации:

  • При гидролизе солей в коррозионной среде образуются ионы, которые действуют как активаторы или замедлители (ингибиторы) разрушения металла.
  • Те соединения, которые увеличивают pH, повышают также скорость деструктивного процесса (например, кальцинированная сода), а те, которые снижают кислотность, – уменьшают ее (хлористый аммоний).
  • При наличии хлоридов и сульфатов в растворе разрушение активизируется до достижения некоторой концентрации солей (что объясняется усилением анодного процесса под влиянием ионов хлора и серы), а затем постепенно снижается из-за уменьшения растворимости кислорода.

Некоторые виды солей способны образовывать труднорастворимую пленку (например, фосфорнокислое железо). Это способствует защите металла от дальнейшего разрушения. Данное свойство используется при применении нейтрализаторов ржавчины.

Замедлители коррозии

Замедлители (или ингибиторы) коррозии различаются по механизму действия на окислительно-восстановительный процесс:

  • Анодные. Благодаря им образуется пассивная пленка. К данной группе относятся соединения на основе хроматов и бихроматов, нитратов и нитритов. Последний тип ингибиторов применяется для межоперационной защиты деталей. При использовании анодных замедлителей коррозии необходимо предварительно определить их минимальную защитную концентрацию, так как добавление в небольших количествах может привести к увеличению скорости разрушения.
  • Катодные. Механизм их действия основан на снижении концентрации кислорода и соответственно, замедлении катодного процесса.
  • Экранирующие. Данные ингибиторы изолируют поверхность металла с помощью образования нерастворимых соединений, отлагающихся в виде защитного слоя.
Рекомендуем:  Применение ортофосфорной кислоты от ржавчины

К последней группе относятся нейтрализаторы ржавчины, которые используются также для очистки от окислов. В их состав, как правило, входит ортофосфорная кислота. Под ее влиянием происходит фосфатирование металла – образование прочного защитного слоя нерастворимых фосфатов. Нейтрализаторы наносят пульверизатором или валиком. Через 25-30 минут поверхность приобретает бело-серый цвет. После высыхания состава наносят лакокрасочные материалы.

Механическое воздействие

Повышению коррозии в агрессивной среде способствуют такие типы механического воздействия, как:

  • Внутренние (при формовании или термообработке) и внешние (под воздействием приложенной извне нагрузки) напряжения. В результате возникает электрохимическая неоднородность, происходит снижение термодинамической устойчивости материала и формируется коррозионное растрескивание. Особенно быстро происходит разрушение при растягивающих нагрузках (трещины образуются в перпендикулярных плоскостях) в присутствии анионов окислителей, например, NaCl. Типичным примером устройств, подверженных такому типу разрушения, являются детали паровых котлов.
  • Знакопеременное динамическое воздействие, вибрации (коррозионная усталость). Происходит интенсивное снижение предела усталости, образуются множественные микротрещины, которые затем сливаются в одну крупную. Число циклов до разрушения в большей степени зависит от химического и фазового состава металлов и сплавов. Такой коррозии подвержены оси насосов, рессоры, лопатки турбин и другие элементы оборудования.
  • Трение деталей. Быстрое корродирование обусловлено механическим износом защитных пленок на поверхности детали и химическим взаимодействием со средой. В жидкости скорость разрушения ниже, чем на воздухе.
  • Кавитационное ударное воздействие. Кавитация возникает при нарушении сплошности потока жидкости в результате образования вакуумных пузырей, которые схлопываются и создают пульсирующее воздействие. В результате возникают глубокие повреждения локального характера. Данный тип коррозии часто наблюдается в химических аппаратах.

Конструктивные факторы

При конструировании элементов, работающих в агрессивных условиях, необходимо учитывать, что скорость коррозии возрастает в следующих случаях:

  • при контакте разнородных металлов (чем больше разница электродного потенциала между ними, тем выше сила тока электрохимического процесса разрушения);
  • при наличии концентраторов механических напряжений (канавки, пазы, отверстия и другие);
  • при низкой чистоте обработанной поверхности, так как при этом возникают локальные короткозамкнутые гальванические пары;
  • при значительной разнице температуры отдельных частей аппарата (образуются термогальванические элементы);
  • при наличии застойных зон (щели, зазоры);
  • при формировании остаточных напряжений, особенно в сварных соединениях (для их устранения необходимо предусмотреть термическую обработку – отжиг).
Рекомендуем:  Как пропитать фанеру для влагостойкости

Методы оценки

Существует несколько способов оценки скорости разрушения металлов в агрессивных средах:

  • Лабораторные – испытания образцов в искусственно смоделированных условиях, близких к реальным. Их преимуществом является то, что они позволяют сократить сроки исследования.
  • Полевые – проводятся в естественных условиях. Занимают длительное время. Преимуществом такого метода является получение информации о свойствах металла в условиях дальнейшей эксплуатации.
  • Натурные – испытания готовых металлических объектов в естественной среде.

Методы оценки коррозионных процессов

Интенсивность коррозии относительно стали определяется в зависимости от характера коррозионных явлений. Начинают обычно с визуального выявления наличия ржавчины на поверхности.

С помощью обычного микроскопа или даже лупы можно довольно точно оценить интенсивность коррозионных процессов и степень повреждения поверхности металла.

Более точно определяют степень повреждения так называемые показатели коррозии. С их помощью можно выяснить:

  • потерю массы изделия вследствие коррозии;
  • уменьшение линейного размера детали или конструкции;
  • интенсивность повреждения в зависимости от времени пребывания детали в коррозионно-активной среде.

Кроме количественной оценки наличия ржавчины, возможна и качественная. Ее индикаторами являются выявленные изменения микроструктуры стали. Так, выявляют межкристаллитную или избирательную коррозию. Гораздо реже интенсивность и скорость коррозии определяется по изменению химического состава окружающей металл среды или по количеству выделенного водорода.

Конкретные показатели коррозии, которые влияют на скорость коррозии, включают в себя:

  1. Интегральная коррозионная характеристика. Она рассчитывается как потеря массы стального изделия за год, деленная на площадь поверхности, на которой появилась ржавчина. При этом подвергшейся коррозии поверхностью стали считается такая, на которой имеются даже единичные поврежденные точки.
  2. Линейная коррозия. Рассчитывается в зависимости от плотности детали и толщины корродировавшего за год слоя изделия.

Какую величину лучше использовать? Если есть возможность точно взвесить деталь до и после ее эксплуатации либо оценить изменения в химическом составе раствора, в котором эта деталь функционировала, то предпочтительнее интегральная оценка коррозионных процессов. В частности, оценивают работоспособность контактной смазки. Если деталь проверяется лишь несколько раз за год либо оценку интенсивности коррозионных явлений необходимо выполнить оперативно, то лучше использовать второй параметр.

Отзывы о термической обработке

Данный метод уплотняет молекулы материала, соответственно, меняется структура. Нередко термическая защита необходима для укрепления трубопроводов, так как она позволяет уберечь материал от ржавчины, а также минимизировать давление, которое оказывается на конструкцию, если оно находится под землей. Пользователи этой методики оставляют отзывы, в которых описывают, что данный метод защиты максимально эффективен и действительно показывает хорошие результаты. Такую обработку желательно применять только в промышленной сфере. Из-за того что камеры для обжига и совершения других процессов, необходимые для получения надежной защиты, стоят дорого, метод популярностью не пользуются. Такая защита металла от коррозии довольно эффективна.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: